Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 186(9): 2040-2040.e1, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2299160

ABSTRACT

Farmed mammals may act as hosts for zoonotic viruses that can cause disease outbreaks in humans. This SnapShot shows which farmed mammals, and to what extent, are of particular risk of harboring and spreading viruses from viral families that are commonly associated with zoonotic disease. It also discusses genome surveillance methods and biosafety measures. To view this SnapShot, open or download the PDF.


Subject(s)
Viruses , Zoonoses , Animals , Humans , Mammals , Disease Outbreaks , Risk Assessment
2.
PLoS One ; 17(6): e0269105, 2022.
Article in English | MEDLINE | ID: covidwho-1987141

ABSTRACT

Male sex and advanced age are associated with severe symptoms of COVID-19. Sex and age also exhibit substantial associations with genome-wide DNA methylation (DNAm) differences in humans. Using a random sample of Illumina EPIC-based genome-wide methylomes from peripheral whole blood of 1,976 parents, participating in The Norwegian Mother, Father and Child Cohort Study (MoBa), we explored whether DNAm in genes linked to SARS-CoV-2 host cell entry and to severe COVID-19 were associated with sex and age. This was carried out by testing 1,572 DNAm sites (CpGs) located near 45 genes for associations with age and sex. We found that DNAm in 281 and 231 of 1,572 CpGs were associated (pFDR<0.01) with sex and aging, respectively. CpGs linked to SARS-CoV-2 host cell entry genes were all associated with age and sex, except for the ACE2 receptor gene (located on the X-chromosome), which was only associated with sex (pFDR<0.01). Furthermore, we examined whether 1,487 autosomal CpGs associated with host-cell entry and severe COVID-19 were more or less associated with sex and age than what would be expected from the same number of randomly sampled genome-wide CpGs. We found that the CpGs associated with host-cell entry and severe COVID-19 were not more or less associated with sex (R2 = 0.77, p = 0.09) than the CpGs sampled from random genomic regions; age was actually found to be significantly less so (R2 = 0.36, p = 0.04). Hence, while we found wide-spread associations between sex and age at CpGs linked to genes implicated with SARS-CoV-2 host cell entry and severe COVID-19, the effect from the sum of these CpGs was not stronger than that from randomly sampled CpGs; for age it was significantly less so. These findings could suggest that advanced age and male sex may not be unsurmountable barriers for the SARS-CoV-2 virus to evolve increased infectiousness.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Child , Cohort Studies , CpG Islands , DNA Methylation , Epigenesis, Genetic , Humans , Male , SARS-CoV-2/genetics , Virus Internalization
3.
Viruses ; 14(6)2022 06 01.
Article in English | MEDLINE | ID: covidwho-1869831

ABSTRACT

The unprecedented pandemic COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with bats as original reservoirs, has once again highlighted the importance of exploring the interface of wildlife diseases and human health. In this study, we identified a novel Betacoronavirus from bank voles (Myodes glareolus) in Grimsö, Sweden, and this virus is designated as Grimso virus. Repeated detection over three years and an overall prevalence of 3.4% suggest that the virus commonly occurs in bank voles. Furthermore, phylogenetic analyses indicate that the Grimso virus belongs to a highly divergent Embecovirus lineage predominantly associated with bank voles. Given that bank voles are one of the most common rodent species in Sweden and Europe, our findings indicate that Grimso virus might be circulating widely in bank voles and further point out the importance of sentinel surveillance of coronaviruses in wild small mammalian animals, especially in wild rodents.


Subject(s)
COVID-19 , Rodent Diseases , Animals , Arvicolinae , COVID-19/veterinary , Phylogeny , SARS-CoV-2/genetics , Sweden/epidemiology
4.
Open Forum Infect Dis ; 9(3): ofab665, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1713709

ABSTRACT

We explored how the duration, size, and number of virus transmission clusters, defined as country-specific monophyletic groups in a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) phylogenetic tree, differed among the Nordic countries of Norway, Sweden, Denmark, Finland, and Iceland. Our results suggest that although geographical connectivity, population density, and openness influence the spread and the size of SARS-CoV-2 transmission clusters, the different country-specific intervention strategies had the largest impact. We also found a significant positive association between the size and duration of transmission clusters in the Nordic countries, suggesting that the rapid deployment of contact tracing is a key response measure in reducing virus transmission.

5.
Open forum infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-1624084

ABSTRACT

We explored how the duration, size and number of virus transmission clusters, defined as country-specific monophyletic groups in a SARS-CoV-2 phylogenetic tree, differed between the Nordic countries of Norway, Sweden, Denmark, Finland and Iceland. Our results suggest that although geographical connectivity, population density and openness influence the spread and the size of SARS-CoV-2 transmission clusters, the differing country-specific intervention strategies had the largest impact. We also found a significant positive association between the size and duration of transmission clusters in the Nordic countries, suggesting that the rapid deployment of contact tracing is a key response measure in reducing virus transmission.

6.
Euro Surveill ; 26(44)2021 11.
Article in English | MEDLINE | ID: covidwho-1503876

ABSTRACT

BackgroundMany countries have attempted to mitigate and control COVID-19 through non-pharmaceutical interventions, particularly with the aim of reducing population movement and contact. However, it remains unclear how the different control strategies impacted the local phylodynamics of the causative SARS-CoV-2 virus.AimWe aimed to assess the duration of chains of virus transmission within individual countries and the extent to which countries exported viruses to their geographical neighbours.MethodsWe analysed complete SARS-CoV-2 genomes to infer the relative frequencies of virus importation and exportation, as well as virus transmission dynamics, in countries of northern Europe. We examined virus evolution and phylodynamics in Denmark, Finland, Iceland, Norway and Sweden during the first year of the COVID-19 pandemic.ResultsThe Nordic countries differed markedly in the invasiveness of control strategies, which we found reflected in transmission chain dynamics. For example, Sweden, which compared with the other Nordic countries relied more on recommendation-based rather than legislation-based mitigation interventions, had transmission chains that were more numerous and tended to have more cases. This trend increased over the first 8 months of 2020. Together with Denmark, Sweden was a net exporter of SARS-CoV-2. Norway and Finland implemented legislation-based interventions; their transmission chain dynamics were in stark contrast to their neighbouring country Sweden.ConclusionSweden constituted an epidemiological and evolutionary refugium that enabled the virus to maintain active transmission and spread to other geographical locations. Our analysis reveals the utility of genomic surveillance where monitoring of active transmission chains is a key metric.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Public Health , Scandinavian and Nordic Countries
SELECTION OF CITATIONS
SEARCH DETAIL